000 08342cam a2200697Ka 4500
001 ocn760091928
003 OCoLC
005 20171224113737.0
006 m o d
007 cr cnu---unuuu
008 111109s2011 enka ob 001 0 eng d
040 _aN$T
_beng
_epn
_cN$T
_dYDXCP
_dDG1
_dTEFOD
_dUPM
_dOCLCQ
_dOCLCF
_dRRP
_dTEFOD
_dOCLCQ
_dDG1
020 _a9781119952954
_q(electronic bk.)
020 _a1119952956
_q(electronic bk.)
020 _a9781119952961
_q(electronic bk.)
020 _a1119952964
_q(electronic bk.)
020 _z9780470682272
020 _z0470682272
020 _z9780470682289
020 _z0470682280
029 1 _aNZ1
_b14695716
029 1 _aNZ1
_b15290911
029 1 _aNZ1
_b15412280
035 _a(OCoLC)760091928
037 _aFF02F8CD-7AC4-4372-BFD9-3D8B02EE5199
_bOverDrive, Inc.
_nhttp://www.overdrive.com
050 4 _aQ327
_bW43 2011eb
072 7 _aCOM
_x047000
_2bisacsh
082 0 4 _a006.4
_223
049 _aMAIN
100 1 _aWebb, A. R.
_q(Andrew R.)
245 1 0 _aStatistical pattern recognition.
250 _a3rd ed. /
_bAndrew R. Webb, Keith D. Copsey, Gavin Cawley.
260 _aOxford :
_bWiley-Blackwell,
_c2011.
300 _a1 online resource (xxiv, 642 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aPrevious edition: New York: Wiley, 2002.
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record.
505 0 _aNote continued: 9.3.Comparing Classifier Performance -- 9.3.1. Which Technique is Best? -- 9.3.2. Statistical Tests -- 9.3.3.Comparing Rules When Misclassification Costs are Uncertain -- 9.3.4. Example Application Study -- 9.3.5. Further Developments -- 9.3.6. Summary -- 9.4. Application Studies -- 9.5. Summary and Discussion -- 9.6. Recommendations -- 9.7. Notes and References -- Exercises -- 10. Feature Selection and Extraction -- 10.1. Introduction -- 10.2. Feature Selection -- 10.2.1. Introduction -- 10.2.2. Characterisation of Feature Selection Approaches -- 10.2.3. Evaluation Measures -- 10.2.4. Search Algorithms for Feature Subset Selection -- 10.2.5.Complete Search -- Branch and Bound -- 10.2.6. Sequential Search -- 10.2.7. Random Search -- 10.2.8. Markov Blanket -- 10.2.9. Stability of Feature Selection -- 10.2.10. Example Application Study -- 10.2.11. Further Developments -- 10.2.12. Summary -- 10.3. Linear Feature Extraction -- 10.3.1. Principal Components Analysis -- 10.3.2. Karhunen-Loeve Transformation -- 10.3.3. Example Application Study -- 10.3.4. Further Developments -- 10.3.5. Summary -- 10.4. Multidimensional Scaling -- 10.4.1. Classical Scaling -- 10.4.2. Metric MDS -- 10.4.3. Ordinal Scaling -- 10.4.4. Algorithms -- 10.4.5. MDS for Feature Extraction -- 10.4.6. Example Application Study -- 10.4.7. Further Developments -- 10.4.8. Summary -- 10.5. Application Studies -- 10.6. Summary and Discussion -- 10.7. Recommendations -- 10.8. Notes and References -- Exercises -- 11. Clustering -- 11.1. Introduction -- 11.2. Hierarchical Methods -- 11.2.1. Single-Link Method -- 11.2.2.Complete-Link Method -- 11.2.3. Sum-of-Squares Method -- 11.2.4. General Agglomerative Algorithm -- 11.2.5. Properties of a Hierarchical Classification -- 11.2.6. Example Application Study -- 11.2.7. Summary -- 11.3. Quick Partitions -- 11.4. Mixture Models -- 11.4.1. Model Description -- 11.4.2. Example Application Study -- 11.5. Sum-of-Squares Methods -- 11.5.1. Clustering Criteria -- 11.5.2. Clustering Algorithms -- 11.5.3. Vector Quantisation -- 11.5.4. Example Application Study -- 11.5.5. Further Developments -- 11.5.6. Summary -- 11.6. Spectral Clustering -- 11.6.1. Elementary Graph Theory -- 11.6.2. Similarity Matrices -- 11.6.3. Application to Clustering -- 11.6.4. Spectral Clustering Algorithm -- 11.6.5. Forms of Graph Laplacian -- 11.6.6. Example Application Study -- 11.6.7. Further Developments -- 11.6.8. Summary -- 11.7. Cluster Validity -- 11.7.1. Introduction -- 11.7.2. Statistical Tests -- 11.7.3. Absence of Class Structure -- 11.7.4. Validity of Individual Clusters -- 11.7.5. Hierarchical Clustering -- 11.7.6. Validation of Individual Clusterings -- 11.7.7. Partitions -- 11.7.8. Relative Criteria -- 11.7.9. Choosing the Number of Clusters -- 11.8. Application Studies -- 11.9. Summary and Discussion -- 11.10. Recommendations -- 11.11. Notes and References -- Exercises -- 12.Complex Networks -- 12.1. Introduction -- 12.1.1. Characteristics -- 12.1.2. Properties -- 12.1.3. Questions to Address -- 12.1.4. Descriptive Features -- 12.1.5. Outline -- 12.2. Mathematics of Networks -- 12.2.1. Graph Matrices -- 12.2.2. Connectivity -- 12.2.3. Distance Measures -- 12.2.4. Weighted Networks -- 12.2.5. Centrality Measures -- 12.2.6. Random Graphs -- 12.3.Community Detection -- 12.3.1. Clustering Methods -- 12.3.2. Girvan-Newman Algorithm -- 12.3.3. Modularity Approaches -- 12.3.4. Local Modularity -- 12.3.5. Clique Percolation -- 12.3.6. Example Application Study -- 12.3.7. Further Developments -- 12.3.8. Summary -- 12.4. Link Prediction -- 12.4.1. Approaches to Link Prediction -- 12.4.2. Example Application Study -- 12.4.3. Further Developments -- 12.5. Application Studies -- 12.6. Summary and Discussion -- 12.7. Recommendations -- 12.8. Notes and References -- Exercises -- 13. Additional Topics -- 13.1. Model Selection -- 13.1.1. Separate Training and Test Sets -- 13.1.2. Cross-Validation -- 13.1.3. The Bayesian Viewpoint -- 13.1.4. Akaike's Information Criterion -- 13.1.5. Minimum Description Length -- 13.2. Missing Data -- 13.3. Outlier Detection and Robust Procedures -- 13.4. Mixed Continuous and Discrete Variables -- 13.5. Structural Risk Minimisation and the Vapnik-Chervonenkis Dimension -- 13.5.1. Bounds on the Expected Risk -- 13.5.2. The VC Dimension.
520 _a"Statistical Pattern Recognition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book describes techniques for analysing data comprising measurements made on individuals or objects. The techniques are used to make a prediction such as disease of a patient, the type of object illuminated by a radar, economic forecast. Emphasis is placed on techniques for classification, a term used for predicting the class or group an object belongs to (based on a set of exemplars) and for methods that seek to discover natural groupings in a data set. Each section concludes with a description of the wide range of practical applications that have been addressed and the further developments of theoretical techniques and includes a variety of exercises, from 'open-book' questions to more lengthy projects. New material is presented, including the analysis of complex networks and basic techniques for analysing the properties of datasets and also introduces readers to the use of variational methods for Bayesian density estimation and looks at new applications in biometrics and security."--
_cProvided by publisher.
520 _a"The book describes techniques for analysing data comprising measurements made on individuals or objects."--
_cProvided by publisher.
650 0 _aPattern perception
_xStatistical methods.
650 0 _aDecision making
_xMathematical models.
650 0 _aMathematical statistics.
650 7 _aCOMPUTERS
_xOptical Data Processing.
_2bisacsh
650 7 _aDecision making
_xMathematical models.
_2fast
_0(OCoLC)fst00889048
650 7 _aMathematical statistics.
_2fast
_0(OCoLC)fst01012127
650 7 _aPattern perception
_xStatistical methods.
_2fast
_0(OCoLC)fst01055263
655 4 _aElectronic books.
700 1 _aCopsey, Keith D.
700 1 _aCawley, Gavin.
776 0 8 _iPrint version:
_aWebb, A.R. (Andrew R.).
_tStatistical pattern recognition.
_b3rd ed.
_dOxford : Wiley-Blackwell, 2011
_z9780470682272
_w(OCoLC)751717289
856 4 0 _uhttp://onlinelibrary.wiley.com/book/10.1002/9781119952954
_zWiley Online Library
938 _aEBSCOhost
_bEBSC
_n398587
938 _aYBP Library Services
_bYANK
_n7188105
938 _aYBP Library Services
_bYANK
_n7461474
938 _aYBP Library Services
_bYANK
_n7598341
994 _a92
_bDG1
999 _c11374
_d11374