000 | 08342cam a2200697Ka 4500 | ||
---|---|---|---|
001 | ocn760091928 | ||
003 | OCoLC | ||
005 | 20171224113737.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 111109s2011 enka ob 001 0 eng d | ||
040 |
_aN$T _beng _epn _cN$T _dYDXCP _dDG1 _dTEFOD _dUPM _dOCLCQ _dOCLCF _dRRP _dTEFOD _dOCLCQ _dDG1 |
||
020 |
_a9781119952954 _q(electronic bk.) |
||
020 |
_a1119952956 _q(electronic bk.) |
||
020 |
_a9781119952961 _q(electronic bk.) |
||
020 |
_a1119952964 _q(electronic bk.) |
||
020 | _z9780470682272 | ||
020 | _z0470682272 | ||
020 | _z9780470682289 | ||
020 | _z0470682280 | ||
029 | 1 |
_aNZ1 _b14695716 |
|
029 | 1 |
_aNZ1 _b15290911 |
|
029 | 1 |
_aNZ1 _b15412280 |
|
035 | _a(OCoLC)760091928 | ||
037 |
_aFF02F8CD-7AC4-4372-BFD9-3D8B02EE5199 _bOverDrive, Inc. _nhttp://www.overdrive.com |
||
050 | 4 |
_aQ327 _bW43 2011eb |
|
072 | 7 |
_aCOM _x047000 _2bisacsh |
|
082 | 0 | 4 |
_a006.4 _223 |
049 | _aMAIN | ||
100 | 1 |
_aWebb, A. R. _q(Andrew R.) |
|
245 | 1 | 0 | _aStatistical pattern recognition. |
250 |
_a3rd ed. / _bAndrew R. Webb, Keith D. Copsey, Gavin Cawley. |
||
260 |
_aOxford : _bWiley-Blackwell, _c2011. |
||
300 |
_a1 online resource (xxiv, 642 pages) : _billustrations |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
500 | _aPrevious edition: New York: Wiley, 2002. | ||
504 | _aIncludes bibliographical references and index. | ||
588 | 0 | _aPrint version record. | |
505 | 0 | _aNote continued: 9.3.Comparing Classifier Performance -- 9.3.1. Which Technique is Best? -- 9.3.2. Statistical Tests -- 9.3.3.Comparing Rules When Misclassification Costs are Uncertain -- 9.3.4. Example Application Study -- 9.3.5. Further Developments -- 9.3.6. Summary -- 9.4. Application Studies -- 9.5. Summary and Discussion -- 9.6. Recommendations -- 9.7. Notes and References -- Exercises -- 10. Feature Selection and Extraction -- 10.1. Introduction -- 10.2. Feature Selection -- 10.2.1. Introduction -- 10.2.2. Characterisation of Feature Selection Approaches -- 10.2.3. Evaluation Measures -- 10.2.4. Search Algorithms for Feature Subset Selection -- 10.2.5.Complete Search -- Branch and Bound -- 10.2.6. Sequential Search -- 10.2.7. Random Search -- 10.2.8. Markov Blanket -- 10.2.9. Stability of Feature Selection -- 10.2.10. Example Application Study -- 10.2.11. Further Developments -- 10.2.12. Summary -- 10.3. Linear Feature Extraction -- 10.3.1. Principal Components Analysis -- 10.3.2. Karhunen-Loeve Transformation -- 10.3.3. Example Application Study -- 10.3.4. Further Developments -- 10.3.5. Summary -- 10.4. Multidimensional Scaling -- 10.4.1. Classical Scaling -- 10.4.2. Metric MDS -- 10.4.3. Ordinal Scaling -- 10.4.4. Algorithms -- 10.4.5. MDS for Feature Extraction -- 10.4.6. Example Application Study -- 10.4.7. Further Developments -- 10.4.8. Summary -- 10.5. Application Studies -- 10.6. Summary and Discussion -- 10.7. Recommendations -- 10.8. Notes and References -- Exercises -- 11. Clustering -- 11.1. Introduction -- 11.2. Hierarchical Methods -- 11.2.1. Single-Link Method -- 11.2.2.Complete-Link Method -- 11.2.3. Sum-of-Squares Method -- 11.2.4. General Agglomerative Algorithm -- 11.2.5. Properties of a Hierarchical Classification -- 11.2.6. Example Application Study -- 11.2.7. Summary -- 11.3. Quick Partitions -- 11.4. Mixture Models -- 11.4.1. Model Description -- 11.4.2. Example Application Study -- 11.5. Sum-of-Squares Methods -- 11.5.1. Clustering Criteria -- 11.5.2. Clustering Algorithms -- 11.5.3. Vector Quantisation -- 11.5.4. Example Application Study -- 11.5.5. Further Developments -- 11.5.6. Summary -- 11.6. Spectral Clustering -- 11.6.1. Elementary Graph Theory -- 11.6.2. Similarity Matrices -- 11.6.3. Application to Clustering -- 11.6.4. Spectral Clustering Algorithm -- 11.6.5. Forms of Graph Laplacian -- 11.6.6. Example Application Study -- 11.6.7. Further Developments -- 11.6.8. Summary -- 11.7. Cluster Validity -- 11.7.1. Introduction -- 11.7.2. Statistical Tests -- 11.7.3. Absence of Class Structure -- 11.7.4. Validity of Individual Clusters -- 11.7.5. Hierarchical Clustering -- 11.7.6. Validation of Individual Clusterings -- 11.7.7. Partitions -- 11.7.8. Relative Criteria -- 11.7.9. Choosing the Number of Clusters -- 11.8. Application Studies -- 11.9. Summary and Discussion -- 11.10. Recommendations -- 11.11. Notes and References -- Exercises -- 12.Complex Networks -- 12.1. Introduction -- 12.1.1. Characteristics -- 12.1.2. Properties -- 12.1.3. Questions to Address -- 12.1.4. Descriptive Features -- 12.1.5. Outline -- 12.2. Mathematics of Networks -- 12.2.1. Graph Matrices -- 12.2.2. Connectivity -- 12.2.3. Distance Measures -- 12.2.4. Weighted Networks -- 12.2.5. Centrality Measures -- 12.2.6. Random Graphs -- 12.3.Community Detection -- 12.3.1. Clustering Methods -- 12.3.2. Girvan-Newman Algorithm -- 12.3.3. Modularity Approaches -- 12.3.4. Local Modularity -- 12.3.5. Clique Percolation -- 12.3.6. Example Application Study -- 12.3.7. Further Developments -- 12.3.8. Summary -- 12.4. Link Prediction -- 12.4.1. Approaches to Link Prediction -- 12.4.2. Example Application Study -- 12.4.3. Further Developments -- 12.5. Application Studies -- 12.6. Summary and Discussion -- 12.7. Recommendations -- 12.8. Notes and References -- Exercises -- 13. Additional Topics -- 13.1. Model Selection -- 13.1.1. Separate Training and Test Sets -- 13.1.2. Cross-Validation -- 13.1.3. The Bayesian Viewpoint -- 13.1.4. Akaike's Information Criterion -- 13.1.5. Minimum Description Length -- 13.2. Missing Data -- 13.3. Outlier Detection and Robust Procedures -- 13.4. Mixed Continuous and Discrete Variables -- 13.5. Structural Risk Minimisation and the Vapnik-Chervonenkis Dimension -- 13.5.1. Bounds on the Expected Risk -- 13.5.2. The VC Dimension. | |
520 |
_a"Statistical Pattern Recognition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book describes techniques for analysing data comprising measurements made on individuals or objects. The techniques are used to make a prediction such as disease of a patient, the type of object illuminated by a radar, economic forecast. Emphasis is placed on techniques for classification, a term used for predicting the class or group an object belongs to (based on a set of exemplars) and for methods that seek to discover natural groupings in a data set. Each section concludes with a description of the wide range of practical applications that have been addressed and the further developments of theoretical techniques and includes a variety of exercises, from 'open-book' questions to more lengthy projects. New material is presented, including the analysis of complex networks and basic techniques for analysing the properties of datasets and also introduces readers to the use of variational methods for Bayesian density estimation and looks at new applications in biometrics and security."-- _cProvided by publisher. |
||
520 |
_a"The book describes techniques for analysing data comprising measurements made on individuals or objects."-- _cProvided by publisher. |
||
650 | 0 |
_aPattern perception _xStatistical methods. |
|
650 | 0 |
_aDecision making _xMathematical models. |
|
650 | 0 | _aMathematical statistics. | |
650 | 7 |
_aCOMPUTERS _xOptical Data Processing. _2bisacsh |
|
650 | 7 |
_aDecision making _xMathematical models. _2fast _0(OCoLC)fst00889048 |
|
650 | 7 |
_aMathematical statistics. _2fast _0(OCoLC)fst01012127 |
|
650 | 7 |
_aPattern perception _xStatistical methods. _2fast _0(OCoLC)fst01055263 |
|
655 | 4 | _aElectronic books. | |
700 | 1 | _aCopsey, Keith D. | |
700 | 1 | _aCawley, Gavin. | |
776 | 0 | 8 |
_iPrint version: _aWebb, A.R. (Andrew R.). _tStatistical pattern recognition. _b3rd ed. _dOxford : Wiley-Blackwell, 2011 _z9780470682272 _w(OCoLC)751717289 |
856 | 4 | 0 |
_uhttp://onlinelibrary.wiley.com/book/10.1002/9781119952954 _zWiley Online Library |
938 |
_aEBSCOhost _bEBSC _n398587 |
||
938 |
_aYBP Library Services _bYANK _n7188105 |
||
938 |
_aYBP Library Services _bYANK _n7461474 |
||
938 |
_aYBP Library Services _bYANK _n7598341 |
||
994 |
_a92 _bDG1 |
||
999 |
_c11374 _d11374 |